Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
NEJM Evid ; 1(3)2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-2325489

ABSTRACT

BACKGROUND: With the emergence of the delta variant, the United States experienced a rapid increase in Covid-19 cases in 2021. We estimated the risk of breakthrough infection and death by month of vaccination as a proxy for waning immunity during a period of delta variant predominance. METHODS: Covid-19 case and death data from 15 U.S. jurisdictions during January 3 to September 4, 2021 were used to estimate weekly hazard rates among fully vaccinated persons, stratified by age group and vaccine product. Case and death rates during August 1 to September 4, 2021 were presented across four cohorts defined by month of vaccination. Poisson models were used to estimate adjusted rate ratios comparing the earlier cohorts to July rates. RESULTS: During August 1 to September 4, 2021, case rates per 100,000 person-weeks among all vaccine recipients for the January to February, March to April, May to June, and July cohorts were 168.8 (95% confidence interval [CI], 167.5 to 170.1), 123.5 (95% CI, 122.8 to 124.1), 83.6 (95% CI, 82.9 to 84.3), and 63.1 (95% CI, 61.6 to 64.6), respectively. Similar trends were observed by age group for BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccine recipients. Rates for the Ad26.COV2.S (Janssen-Johnson & Johnson) vaccine were higher; however, trends were inconsistent. BNT162b2 vaccine recipients 65 years of age or older had higher death rates among those vaccinated earlier in the year. Protection against death was sustained for the mRNA-1273 vaccine recipients. Across age groups and vaccine types, people who were vaccinated 6 months ago or longer (January-February) were 3.44 (3.36 to 3.53) times more likely to be infected and 1.70 (1.29 to 2.23) times more likely to die from COVID-19 than people vaccinated recently in July 2021. CONCLUSIONS: Our study suggests that protection from SARS-CoV-2 infection among all ages or death among older adults waned with increasing time since vaccination during a period of delta predominance. These results add to the evidence base that supports U.S. booster recommendations, especially for older adults vaccinated with BNT162b2 and recipients of the Ad26.COV2.S vaccine. (Funded by the Centers for Disease Control and Prevention.).

2.
J Infect Dis ; 227(4): 533-542, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2244138

ABSTRACT

BACKGROUND: Evidence is accumulating of coronavirus disease 2019 (COVID-19) vaccine effectiveness among persons with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We evaluated the effect against incident SARS-CoV-2 infection of (1) prior infection without vaccination, (2) vaccination (2 doses of Pfizer-BioNTech COVID-19 vaccine) without prior infection, and (3) vaccination after prior infection, all compared with unvaccinated persons without prior infection. We included long-term care facility staff in New York City aged <65 years with weekly SARS-CoV-2 testing from 21 January to 5 June 2021. Test results were obtained from state-mandated laboratory reporting. Vaccination status was obtained from the Citywide Immunization Registry. Cox proportional hazards models adjusted for confounding with inverse probability of treatment weights. RESULTS: Compared with unvaccinated persons without prior infection, incident SARS-CoV-2 infection risk was lower in all groups: 54.6% (95% confidence interval, 38.0%-66.8%) lower among unvaccinated, previously infected persons; 80.0% (67.6%-87.7%) lower among fully vaccinated persons without prior infection; and 82.4% (70.8%-89.3%) lower among persons fully vaccinated after prior infection. CONCLUSIONS: Two doses of Pfizer-BioNTech COVID-19 vaccine reduced SARS-CoV-2 infection risk by ≥80% and, for those with prior infection, increased protection from prior infection alone. These findings support recommendations that all eligible persons, regardless of prior infection, be vaccinated against COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , BNT162 Vaccine , COVID-19 Testing , Long-Term Care , New York City/epidemiology , SARS-CoV-2 , Nursing Homes
3.
Clin Infect Dis ; 2022 May 20.
Article in English | MEDLINE | ID: covidwho-2232407

ABSTRACT

BACKGROUND: Belief that vaccination is not needed for individuals with prior infection contributes to COVID-19 vaccine hesitancy. Among individuals infected with SARS-CoV-2 before vaccines became available, we assessed whether vaccinated individuals had reduced odds of reinfection. METHODS: We conducted a case-control study among adult New York City residents who tested positive for SARS-CoV-2 infection in 2020, did not test positive again >90 days after initial positive test through July 1, 2021, and did not die before July 1, 2021. Case-patients with reinfection during July-November 2021 and control subjects with no reinfection were matched (1:3) on age, sex, timing of initial positive test in 2020, and neighborhood poverty level. Matched odds ratios (mOR) and 95% confidence intervals (CI) were calculated using conditional logistic regression. RESULTS: Of 349,827 eligible adults, 2,583 were reinfected during July-November 2021. Of 2,401 with complete matching criteria data, 1,102 (45.9%) were known to be symptomatic for COVID-19-like-illness, and 96 (4.0%) were hospitalized. Unvaccinated individuals, compared with individuals fully vaccinated within the prior 90 days, had elevated odds of reinfection (mOR, 3.21; 95% CI, 2.70, 3.82), of symptomatic reinfection (mOR, 2.97; 95% CI, 2.31, 3.83), and of reinfection with hospitalization (mOR, 2.09; 95% CI, 0.91, 4.79). All three vaccines authorized or approved for use in the U.S. were similarly effective. CONCLUSION: Vaccination reduced odds of reinfections when the Delta variant predominated. Further studies should assess risk of severe outcomes among reinfected persons as new variants emerge, infection- and vaccine-induced immunity wanes, and booster doses are administered.

4.
Clin Infect Dis ; 2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-2231740

ABSTRACT

BACKGROUND: On January 30, 2020 COVID-19 was declared a Public Health Emergency of International Concern (PHEIC) by the World Health Organization. Almost a month later, on February 29, 2020, the first case in New York City (NYC) was diagnosed. METHODS: Three-hundred-sixty persons with COVID-like illness were reported to the NYC Department of Health and Mental Hygiene (DOHMH) before February 29, but 37 of these tested negative and 237 were never tested for SARS-COV-2. Records of 86 persons with confirmed COVID-19 and reported symptom onset prior to February 29, 2020, were reviewed by four physician-epidemiologists. Case-patients were classified as possible delayed recognition (PDR) of COVID-19 when upon medical review the reported onset date was believed to reflect the initial symptoms of COVID-19, or insufficient evidence to classify, when the onset could not be determined with confidence. Clinical and epidemiological factors collected by DOHMH and supplemented with emergency department records were analyzed. RESULTS: Thirty-nine PDR COVID-19 cases were identified. The majority had severe disease with 69% presenting to an ED visit within 2 weeks of symptom onset. The first PDR COVID-19 case had symptom onset on January 28, 2020. Only 7 of the 39 cases (18%) had traveled internationally within 14 days of onset (none to China). CONCLUSIONS: COVID-19 was in NYC before being classified as a PHEIC, and eluded surveillance for another month. The delay in recognition limited mitigation efforts; by the time city and state-wide mandates were enacted,16 and 22 days later, there was already widespread community transmission.

6.
JAMIA Open ; 5(2): ooac029, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1967897

ABSTRACT

Objective: New York City (NYC) experienced a large first wave of coronavirus disease 2019 (COVID-19) in the spring of 2020, but the Health Department lacked tools to easily visualize and analyze incoming surveillance data to inform response activities. To streamline ongoing surveillance, a group of infectious disease epidemiologists built an interactive dashboard using open-source software to monitor demographic, spatial, and temporal trends in COVID-19 epidemiology in NYC in near real-time for internal use by other surveillance and epidemiology experts. Materials and methods: Existing surveillance databases and systems were leveraged to create daily analytic datasets of COVID-19 case and testing information, aggregated by week and key demographics. The dashboard was developed iteratively using R, and includes interactive graphs, tables, and maps summarizing recent COVID-19 epidemiologic trends. Additional data and interactive features were incorporated to provide further information on the spread of COVID-19 in NYC. Results: The dashboard allows key staff to quickly review situational data, identify concerning trends, and easily maintain granular situational awareness of COVID-19 epidemiology in NYC. Discussion: The dashboard is used to inform weekly surveillance summaries and alleviated the burden of manual report production on infectious disease epidemiologists. The system was built by and for epidemiologists, which is critical to its utility and functionality. Interactivity allows users to understand broad and granular data, and flexibility in dashboard development means new metrics and visualizations can be developed as needed. Conclusions: Additional investment and development of public health informatics tools, along with standardized frameworks for local health jurisdictions to analyze and visualize data in emergencies, are warranted.

7.
Vaccine X ; 10: 100134, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1587103

ABSTRACT

BACKGROUND: In clinical trials, several SARS-CoV-2 vaccines were shown to reduce risk of severe COVID-19 illness. Local, population-level, real-world evidence of vaccine effectiveness is accumulating. We assessed vaccine effectiveness for community-dwelling New York City (NYC) residents using a quasi-experimental, regression discontinuity design, leveraging a period (January 12-March 9, 2021) when ≥ 65-year-olds were vaccine-eligible but younger persons, excluding essential workers, were not. METHODS: We constructed segmented, negative binomial regression models of age-specific COVID-19 hospitalization rates among 45-84-year-old NYC residents during a post-vaccination program implementation period (February 21-April 17, 2021), with a discontinuity at age 65 years. The relationship between age and hospitalization rates in an unvaccinated population was incorporated using a pre-implementation period (December 20, 2020-February 13, 2021). We calculated the rate ratio (RR) and 95% confidence interval (CI) for the interaction between implementation period (pre or post) and age-based eligibility (45-64 or 65-84 years). Analyses were stratified by race/ethnicity and borough of residence. Similar analyses were conducted for COVID-19 deaths. RESULTS: Hospitalization rates among 65-84-year-olds decreased from pre- to post-implementation periods (RR 0.85, 95% CI: 0.74-0.97), controlling for trends among 45-64-year-olds. Accordingly, an estimated 721 (95% CI: 126-1,241) hospitalizations were averted. Residents just above the eligibility threshold (65-66-year-olds) had lower hospitalization rates than those below (63-64-year-olds). Racial/ethnic groups and boroughs with higher vaccine coverage generally experienced greater reductions in RR point estimates. Uncertainty was greater for the decrease in COVID-19 death rates (RR 0.85, 95% CI: 0.66-1.10). CONCLUSION: The vaccination program in NYC reduced COVID-19 hospitalizations among the initially age-eligible ≥ 65-year-old population by approximately 15% in the first eight weeks. The real-world evidence of vaccine effectiveness makes it more imperative to improve vaccine access and uptake to reduce inequities in COVID-19 outcomes.

8.
Clin Infect Dis ; 73(9): 1707-1710, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501054

ABSTRACT

Using a population-based, representative telephone survey, ~930 000 New York City residents had COVID-19 illness beginning 20 March-30 April 2020, a period with limited testing. For every 1000 persons estimated with COVID-19 illness, 141.8 were tested and reported as cases, 36.8 were hospitalized, and 12.8 died, varying by demographic characteristics.


Subject(s)
COVID-19 , Hospitalization , Humans , New York City/epidemiology , SARS-CoV-2
9.
MMWR Morb Mortal Wkly Rep ; 70(37): 1284-1290, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1417365

ABSTRACT

COVID-19 vaccine breakthrough infection surveillance helps monitor trends in disease incidence and severe outcomes in fully vaccinated persons, including the impact of the highly transmissible B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19. Reported COVID-19 cases, hospitalizations, and deaths occurring among persons aged ≥18 years during April 4-July 17, 2021, were analyzed by vaccination status across 13 U.S. jurisdictions that routinely linked case surveillance and immunization registry data. Averaged weekly, age-standardized incidence rate ratios (IRRs) for cases among persons who were not fully vaccinated compared with those among fully vaccinated persons decreased from 11.1 (95% confidence interval [CI] = 7.8-15.8) to 4.6 (95% CI = 2.5-8.5) between two periods when prevalence of the Delta variant was lower (<50% of sequenced isolates; April 4-June 19) and higher (≥50%; June 20-July 17), and IRRs for hospitalizations and deaths decreased between the same two periods, from 13.3 (95% CI = 11.3-15.6) to 10.4 (95% CI = 8.1-13.3) and from 16.6 (95% CI = 13.5-20.4) to 11.3 (95% CI = 9.1-13.9). Findings were consistent with a potential decline in vaccine protection against confirmed SARS-CoV-2 infection and continued strong protection against COVID-19-associated hospitalization and death. Getting vaccinated protects against severe illness from COVID-19, including the Delta variant, and monitoring COVID-19 incidence by vaccination status might provide early signals of changes in vaccine-related protection that can be confirmed through well-controlled vaccine effectiveness (VE) studies.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/mortality , COVID-19/therapy , Humans , Incidence , Middle Aged , United States/epidemiology , Young Adult
10.
MMWR Morb Mortal Wkly Rep ; 69(28): 918-922, 2020 Jul 17.
Article in English | MEDLINE | ID: covidwho-1389847

ABSTRACT

To limit introduction of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), the United States restricted travel from China on February 2, 2020, and from Europe on March 13. To determine whether local transmission of SARS-CoV-2 could be detected, the New York City (NYC) Department of Health and Mental Hygiene (DOHMH) conducted deidentified sentinel surveillance at six NYC hospital emergency departments (EDs) during March 1-20. On March 8, while testing availability for SARS-CoV-2 was still limited, DOHMH announced sustained community transmission of SARS-CoV-2 (1). At this time, twenty-six NYC residents had confirmed COVID-19, and ED visits for influenza-like illness* increased, despite decreased influenza virus circulation.† The following week, on March 15, when only seven of the 56 (13%) patients with known exposure histories had exposure outside of NYC, the level of community SARS-CoV-2 transmission status was elevated from sustained community transmission to widespread community transmission (2). Through sentinel surveillance during March 1-20, DOHMH collected 544 specimens from patients with influenza-like symptoms (ILS)§ who had negative test results for influenza and, in some instances, other respiratory pathogens.¶ All 544 specimens were tested for SARS-CoV-2 at CDC; 36 (6.6%) tested positive. Using genetic sequencing, CDC determined that the sequences of most SARS-CoV-2-positive specimens resembled those circulating in Europe, suggesting probable introductions of SARS-CoV-2 from Europe, from other U.S. locations, and local introductions from within New York. These findings demonstrate that partnering with health care facilities and developing the systems needed for rapid implementation of sentinel surveillance, coupled with capacity for genetic sequencing before an outbreak, can help inform timely containment and mitigation strategies.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Community-Acquired Infections/diagnosis , Community-Acquired Infections/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Sentinel Surveillance , Adolescent , Adult , Aged , COVID-19 , Child , Child, Preschool , Community-Acquired Infections/epidemiology , Coronavirus Infections/epidemiology , Emergency Service, Hospital , Female , Humans , Infant , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Sequence Analysis , Travel-Related Illness , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL